Login

Mathematics of Planet Earth

  • Home
  • Programs
    • Long Term Programs
    • Summer Schools
    • Workshops
    • Meetings
    • Special Sessions
    • Colloquia and Seminars
    • Public Lectures
    • Simons Lectures
  • Education
    • Public Lectures
    • Speakers Bureau
    • Summer Schools
    • Resources
    • Posters
    • Curriculum Materials
    • Academic programs
  • Events
    • MPE Day at UNESCO
    • Public Lectures
    • Exhibitions
    • Competitions
    • Awareness events
  • Partners
    • MPE2013 Partner Reports
    • Societies
    • International Bodies
    • Institutes
    • Research Centers
    • Scientific Journals
    • Teacher Associations
    • Academic
    • Magazines
    • Science Centers
    • Others
    • Becoming a Partner
  • Learn More
    • Books
    • Articles
    • Educational Resources
    • Videos and Podcasts
    • Speakers Bureau
  • Newsroom
  • MPE2013+
  • Daily Blog
  • Calendar
  • Opportunities
  • Français

Search

Latest Posts

Four reasons why the fight against climate change is likely to fail

March 15, 2014

Democrats in the Senate stayed up all night talking about the perils of climate change. But while there's hope that technology, changing consumer and business practices or new policies could finally turn the tide and slow or reverse climate change, there are also good reasons to think those efforts will fail. [...]

How Inge Lehmann discovered the inner core of the Earth

February 19, 2014

Inge Lehmann was a Danish mathematician. She worked at the Danish Geodetic Institute, and she had access to the data recorded at seismic stations around the world. She discovered the inner core of the Earth in 1936, by analyzing the seismic data from large earthquakes recorded at different stations around the world. [...]

Ninth Simons Public Lecture


On November 4, 2013, Emily A. Carter (Princeton) delivered the ninth and final public lecture in the series. The title was Quantum Mechanics and the Future of the Planet and the location was the Korn Convocation Hall at UCLA.

Read more...

Categories

MPE2013 Newsletter

Modeling the Progression and Propagation of Infectious Diseases

Disease Modeling, Mathematics

Math of Planet Earth 2013, in addition to dealing with the Earth itself (climate, earthquakes, etc.) also deals with the biosphere and humanity’s relationship to it. Certainly the progression and propagation of infectious diseases is an important part of this. Two articles, written for a general audience, provide two examples from the applied mathematics literature that show how mathematics is used to model and understand the progression and propagation of certain kinds of infections.

The first article analyzes early viral dynamics in HIV infections with the goal of ultimately better understanding treatment and prevention strategies.

The second article also applied to HIV infections, dealing with “viral blips” — episodes of high viral production interspersed by periods of relative quiescence. These quiescent or silent stages are hard to study with experimental models. The article explores how certain mathematical models and analysis can help our understanding.

Both articles are based upon recent papers that appeared in the SIAM Journal on Applied Mathematics.

This entry was posted in Disease Modeling, Mathematics by Guest Blogger. Bookmark the permalink.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

  • Contact

IMU UNESCO ICIAM ICSU